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We obtain app rox ima te  solutions of Stefan 's  p rob lem for  var ious  boundary conditions and 
for  an initial t e m p e r a t u r e  equal to the phase change t empera tu re ;  the distr ibution of t e m -  
pe ra tu re  along a coordinate  di rect ion in a region of increas ing  phase is given in the fo rm 
of a quadrat ic  express ion .  

F o r  p rac t i ca l  purposes  approx imate  solutions of Stefan 's  p rob lem a re  usual ly  obtained assuming  a 
l i nea r  t e m p e r a t u r e  dis t r ibut ion in a region of increas ing  phase  [3, 4]. The c lass ica l  solutions of Lam~ 
- C l a p e y r o n  and Stefan (1)are  only sui table fo r  a boundary condition of the f i r s t  kind. We seek  a solution 
for  the t e m p e r a t u r e  of an increas ing  phase  in the t r i n o r m a l  fo rm 

T = Ax 2 + Bx + C, (1) 

where  the function C(t) has  the physical  meaning of t e m p e r a t u r e  of the ex te r io r  sur face  of the body. We 
a s s u m e  this sur face  to be p lanar  and t o  contain the coordinate  origin; the OX axis  is taken in a direct ion 
along the in te r io r  normal  to this sur face .  The initial t e m p e r a t u r e ,  and hence also the t e m p e r a t u r e  at  all 
points of dec reas ing  phase ,  at  an a r b i t r a r y  t ime  instant  a r e  a s sumed  to be equal to the phase t rans i t ion 
t e m p e r a t u r e ,  which we take as our origin for  t e m p e r a t u r e  calculat ions.  

Determining  the solutions of nonlinear  p rob l ems  of heat  and m a s s  t r a n s f e r  in the fo rm (1) usually 
p roves  to be suff icient ly accu ra t e  for  p rac t i ca l  purposes  ([5], et al.). The initial conditions we a s sume  co r -  
respond,  to one degree  o r  another ,  to that  for  cas t  hardening,  to the deepening vaporizat ion zone in the 
drying of a cap i l l a ry -po rous  body [2], and to other  the rmophys ica l  p r o c e s s e s .  

The p rob lem in question may be desc r ibed  as follows: 

c)'2T (x, t) OT (x, t) (2). 
a ( O ~ < x ~ ) ,  

Ox 2 Ot 

T (x, 0) = 0, (3) 

T (x, l) = 0 (x ~ ~), (4) 

(~' - •  ( 5 )  
_ ~ OT t) dE 

Ox dt 

In wri t ing the Stefan condition (5) we a s sume  that  ~ > 0 for  absorpt ion and that • < 0 when heat  is 
l i be ra ted  during a phase  t rans i t ion.  The Eqs.  (2)-(5) must  be supplemented by a boundary condition r e l a t -  
ing the body and its surrounding medium.  The Eqs.  (3) and (4) supe r impose  the condition 

( 0 )  = 0 ( 5 a )  

on the motion of the boundary separa t ing  the phases .  

The coeff icients  A, ]3, and C must  be chosen so that at x = ~ the Eq. (2) becomes  an identity, i . e . ,  
as  is evident f rom Eqs.  (1) and (2), the following equation mus t  hold for  the unknown functions of the t ime:  

2aA = ~2 (dA/dt) + ~ (dB/dt) + dC/dt. (6) 
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F o r  the approximat ion (1) the conditions (5) and (4) a s s u m e  the fo rm 

d~ (2A~ + B) ---- - -  ~ - - ,  
dt 

A~ 2 + B~ -k C = O. 

(75 

(s) 

On the sur face  x = 0 of the body we a re  given a boundary condition of the th i rd  kind: 

- -  ~, [OT (0, l)/Ox] = a (P - -  C), 

which, for  the approximat ion  (1), may be wri t ten as 

B = a~ -1 (C - -  P). (9). 

F r o m  Eqs.  (7), (8), and (9) we find 

A = (2~, + (z~)-~ ( ~  • at c~• d~ )  
dt ~ dt 

C = (2~, + (z~) - I  (aP~ -}- • d~ 

(10) 

(115 

Upon substituting the Eqs.  (9), (10), and (11) into Eq. (6), we obtain, a f t e r  involved but e l emen ta ry  
manipulat ions,  a differential  equation for  the function ~(t): 

~ ~ d~ (~_t~)~= 2,,(2~ + ~)-~ I.~_ _ (_~_ + _s _~_ 1. (1.2) 

In solving this equation we cons ider  four  ca ses .  In the f i r s t  case  we neglect  the vo lumet r ic  heat  
capaci ty  of the body, i . e . ,  we le t  a ~ ~ .  In tegra t ing the equation obtained as  a rest t l t  of pass ing to the 
l imi t  in Eq. (12), we obtain, subject  to the condition (5a), t h e  solution 

which, in d imens ion less  quanti t ies,  takes  the fo rm 

~l = - -  1 + (1 + 2Az) 1/2. 

( 1 3 )  

In the second case  we neglect  the heat  capaci ty  and a s s u m e  that  a boundary condition of the f i r s t  kind 
r e l a t e s  the body with the surrounding medium,  i . e . ,  we le t  a ~ ~,  a - -  ~. 

The solution (13) is then t r a n s f o r m e d  into the equation 

= (2~• or ~ = w.2(at)X/2, 

where  the d imens ion less  coeff icient  of propor t iona l i ty  is given by 

w = (0.5A)K (14) 

In the third case  we cons ider  solving our  p rob lem by using the approximat ion  (1), but with a boundary 
condition of the f i r s t  kind, i . e . ,  fo r  a ~ co As a r e su l t  of the cor responding  passage  to the l imi t ,  we 
obtain f r o m  Eqs .  (95, (10), and (11) 

P • d~ (15) 
~2 ~ dt 

u d~ 2P (16) 
U ~ -  �9 �9 

dt 

c = p .  . (~7) 

As a r e su l t  of integrat ing the equation obtained by lett ing a ~ ~ in Eq. (125, we obtain, subject  to the 
condition (5a5, the solution 

~= V 2 (_a_}_ V a , +  ~ ) t . .  (18) 
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Fig. 1. Relationship between the 
values of w and A: 1) by Eq. (14); 
2) by Eq. (19); 3) in accord  with 
the L a m ~ - C l a p e y r o n  solution [1]. 

If  in Eq. (18) we divide the coefficient  of ~-t by 2~fa, we obtain 

w = [0,5 (V1 + 2A--  1)] I/2. (19)  

In the f igure we show the graph of w = w(A), calculated in accord  with Eqs.  (14) and (19), and also 
the graph obtained as  the resu l t  of graphical ly  solving the t ranscendental  equation der ived f rom the Lam6 
-C la pe y r on  solution {[1], p. 424). In comparing both graphs it is evident that for  determining the law of 
motion of the phase separat ion boundary our  approximate solution is no worse  than that obtained by the Lam~ 
- C l a p e y r o n  method. 

Finally,  we cons ider  the fourth case,  the solution of Eq. (12) in its general, form.  Writing Eq. (12) 
in dimensionless  var iables ,  we find 

We make the change of var iables  

u = V i + 2  A n(2 +~ )  
(1 + ~)u 

and, noting that when T = 0 the new variable ,  by vir tue of the condition (5a), is equal to 1, we find the integ- 
ra l  of Eq. (20) to be 

1 [ u + t  1 ( V I + 2 A + u ) ( V I + 2 A - - 1 )  1 ] (21) "~ = - -  �9 In ~ _  _ _  
2 l + 2 A - - u  S 2 V l + 2 A  ( V I + 2 A - - u ) ( V I - ? 2 A - } - I )  A " 

We re turn  now to the boundary condition of the second kind, i . e . ,  

- -  ~ [OT (0, t)/Ox] = Q. 

In the express ion  (1), obviously, 

B = Q (22)  

Adjoining the express ion  (22) to the Eqs.  (6)-(9) and solving the resul t ing sys tem,  we obtain 

d'i 

dt 

i ( Q _ •  (23) 

_ _ (  d~ ) (24) 
C- -  ~ • ~-Q 

2~ ~ -  ' ' 

~-  1 + a •  - -  1 . ( 25 )  

In Eq. (25) we now change over  to the dimensionless  quantities ~ and 0, and we then integrate  the 
equation with the aid of the substitution z = ~/1 + 4~. Upon rever t ing  to the var iables  ~ and 0, we may wri te  
the integral  of this equation as follows: 

240 = [2 (1 + 44) 3/2 + 3 (1 + 44) - -  5]. (26) 
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When the volumetric heat capacity is small, i . e . ,  when the quantity a is large,  the dimensionless 
coordinate ~ << 1. Replacing, on the basis of this condition, the right side of Eq. (26) by its approximate 
expression, we obtain 

=0,  or ~ = Q •  

In view of the conditions (3) and (4), the solutions we have obtained are  suitable for both a semi-  
bounded body and for an unbounded plate when these lat ter  interact symmetrically with the surrounding 
medium. The solutions for a sphere and for a long cylinder can be obtained by replacing Eq. (2) by the 
equation for the corresponding body. Solutions can be obtained for exter ior  boundary condRions which are 
monotone functions of the time and also when the thermophysical coefficients of the increasing phase depend 
l inearly on the temperature.  

t 
X 

T(x, t) 

a and k 

P = const 

Q = const 

A, B, and C 

A = k P / a ~ ,  77 = a ~ / k ,  T = a ~ 2 t / k  2, ~ = Q ~ / a ~ ,  0 = Q2t/a~2 

N O T A T I O N  

is the time; 
is the coordinate; 
is the coordinate of phase interface; 
is the temperature os body; 
are  the thermal diffusivity and thermal conductivity 
of growing phase;  
is the volumetric heat of change of phase; 
is the temperature of medium (at boundary condi- 
tions of the first  and third kinds); 
is the density of heat flux at the body-  medium inter-  
face (at boundary condition of the second kind); i 
are  the time-dependent coefficients; 
is the heat- t ransfer  coefficient; 
a re  the dimensionless characterist ics of the pro-  
cess 

1. 
2. 
3. 
4. 

5. 
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